

Energy and Air Quality

Dan Loughlin

Integrated Systems Analysis Workgroup
Air Pollution Prevention and Control Division

Outline

Part 1

- Why energy and air quality?
- Is air pollution destined to worsen in the future?
- Would coordinated energy-air quality policies be more effective than when implemented in isolation?

Part 2

 EPA ORD efforts to model linkages between energy system and air quality

Why energy and air quality?

Air Quality Today

Current non-attainment areas for PM2.5 and ozone

National Population Projections

By 2055, increase of between 34% and 54%

Projected Economic Growth

Projected Climate Change

[Above] Projected change in annual mean surface air temperature from the late 20th century (1971-2000 average) to the middle 21st century (2051-2060 average). The change is in response to increasing greenhouse gases and aerosols based on a "middle of the road" estimate of future emissions. This scenario is denoted as IPCC SRES A1B [reference: IPCC, 2000]. Warming is larger over continents than oceans, and is largest at high latitudes of the Northern Hemisphere. These results are from the GFDL CM2.1 model, but are consistent with a broad consensus of modeling results.

Source:

NASA

Future Energy Service Demands

From 2000 to 2030:

(Derived from the DOE's U.S. Annual Energy Outlook)

- Residential cooling demand increase by 115%
- Commercial cooling demand increase by 60%
- Residential heating demand increase by 37%
- Commercial heating demand increase by 30%
- Light duty travel demand increase by 85%

The Energy System and Emissions

Today's energy system

Air Pollution

Contribution to anthropogenic emissions:

NOx ~ 95%

SOx ~ 89%

CO ~ 95%

Hg ~ 87%

Air Quality Concerns:

Ozone

PM2.5

Acid deposition

Toxics

Derived from EPA
National Emissions Inventory

Potential Role of Technology Change

What about air quality in the future?

Factors affecting future air quality:

- Economic growth
- Temperature
- Reactive pollutant formation
- Energy demands
- Technology change

Driven by:

- Economics
- Preference
- Policy
- R&D

Potential Role of Policy

Existing Regulations

- -Clean Air Act Amendments
- -Clean Air Interstate Rule
- -On-Road and Non-road Diesel Rules
- New Source Performance Standards
- -CAFE

Speculation: Possible Policies & Regulations?

- –More stringent pollutant emissions limits?
- –Climate and/or energy policies?
- –New CAFE standards?
- –Renewable portfolio standards?

Outstanding Questions on Policy

- What impacts do various energy and climate policies have on air quality?
- What impacts do air quality policies have on greenhouse gas emissions?
- Are there benefits in taking a coordinated approach?

ORD Global Change Air Quality Assessment

Goals:

- Anticipate potential future air quality concerns
- Develop decision support information and tools to assist federal, regional, state and local decision makers adapt to and mitigate the air quality implications of global change

Integrated Modeling Framework

Integrated Modeling Framework

Technology Change Modeling: MARKAL

MARKAL Inputs:

- energy service demands
- resource supply cost curves
- current and future technology characteristics
- emissions regulations

MARKAL Outputs (5-yr increments, 2000-2050):

- technology penetrations by demand
- fuel use by type and region

Derived Outputs:

Emissions growth and control factors for SMOKE

Nine-Region MARKAL Model

- Based on U.S. Census divisions
- Models from 2000 to 2050 in 5-yr increments
- Improve representation of:
 - Coal, oil, and gas supply and transportation costs
 - Renewable energy resources
 - Existing technology stock
 - Technology suitability
 - End-use energy demands
 - Inter-region energy trading
 - Emissions regulations
- Expected public release late 2007 or 2008

Regional Emissions Growth Factors from MARKAL

Tying it all Together

Developing internally consistent, realistic futureyear spatially allocated emissions projections

Projections of Anthropogenic Emissions

Baseline Emissions Inventory

NEI 2000

SMOKE	Growth &	Contro	File
23000	10100100	1.441	NOX
23000	10100100	4.335	SOX
23000	10100100	1.094	PM10
23000	10100200	1.441	NOX
23000	10100200	4.335	SOX
23000	10100200	1.094	PM10
23000	10100300	1.441	NOX

CMAQ
(Air Quality Model)

Contact:

Dan Loughlin

Loughlin.Dan@epa.gov

919-541-3928

